======== Examples ======== Some examples of what is possible. Please refer to the rest of the documentation for more examples. Training and tuning an LS-SVM ============================= .. plot:: :include-source: import kerch tr_set, _, _, _ = kerch.dataset.factory("two_moons", # which dataset tr_size=250) # training size mdl = kerch.model.LSSVM(type="rbf", # kernel type representation="dual") # initiate model mdl.set_data_prop(data=tr_set[0], # data labels=tr_set[1], # corresponding labels proportions=[1, 0, 0]) # initiate dataset mdl.hyperopt({"gamma", "sigma"}, # define which parameters to tune max_evals=500, # define how many trials k=10) # 10-fold cross-validation mdl.fit() # fit the optimal parameters found kerch.plot.plot_model(mdl) # plot the model using the built-in method Out-of-sample normalized and centered kernels ============================================= .. plot:: :include-source: import kerch import numpy as np from matplotlib import pyplot as plt sample = np.sin(np.arange(0,15) / np.pi) + .1 oos = np.sin(np.arange(15,30) / np.pi) + .1 k = kerch.kernel.factory(type="polynomial", sample=sample, center=True, normalize=True) fig, axs = plt.subplots(2,2) axs[0,0].imshow(k.K, vmin=-1, vmax=1) axs[0,0].set_title("Sample -Sample") axs[0,1].imshow(k.k(y=oos), vmin=-1, vmax=1) axs[0,1].set_title("Sample - OOS") axs[1,0].imshow(k.k(x=oos), vmin=-1, vmax=1) axs[1,0].set_title("OOS - Sample") im = axs[1,1].imshow(k.k(x=oos, y=oos), vmin=-1, vmax=1) axs[1,1].set_title("OOS - OOS") for ax in axs.flat: ax.set_xticks([]) ax.set_yticks([]) fig.colorbar(im, ax=axs.ravel().tolist())