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Abstract
In this paper, we characterize Probabilistic Prin-
cipal Component Analysis in Hilbert spaces and
demonstrate how the optimal solution admits a
representation in dual space. This allows us to de-
velop a generative framework for kernel methods.
Furthermore, we show how it englobes Kernel
Principal Component Analysis and illustrate its
working on a toy and a real dataset.

1. Introduction
Classical datasets often consist of many features, making
dimensionality reduction methods particularly appealing.
Principal Component Analysis (PCA) is one of the most
straightforward frameworks to that goal and it is hard to
find a domain in machine learning or statistics where it
has not proven to be useful. PCA considers new decorre-
lated features by computing the eigendecomposition of the
covariance matrix.

Probabilistic models on another side participate to the build-
ing of a stronger foundation for machine learning models.
By considering models as probability distributions, we are
able to natively access notions such as variance or sampling,
i.e. generation. A probabilistic approach to PCA, known as
Probabilistic Principal Component Analysis (Prob. PCA),
has been formulated by (Tipping & Bishop, 1999). Its prin-
ciples can be visualized in the primal part of Table 1.

Even endowed with a probabilistic interpretation, PCA re-
mains restricted to linear relations between the different fea-
tures. Kernel Principal Component Analysis (KPCA) (Mika
et al., 1998; Schölkopf et al., 1998) was an attempt to give a
non-linear extension to (non-probabilistic) PCA by decom-
posing a kernel matrix instead of the covariance matrix. An
earlier attempt to give a probabilistic formulation of KPCA
has been done by (Zhang et al., 2004). As developed further,
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the latter model does not consist in a kernel equivalent of
the Prob. PCA, but rather in another model based on similar
principles.

More recently, Restricted Kernel Machines (Suykens, 2017)
opened a new door for a probabilistic version of PCA both
in primal and dual. They essentially use the Fenchel-Young
inequality on a variational formulation of KPCA (Suykens
et al., 2003; Alaı́z et al., 2018) to obtain an energy func-
tion, closely resembling to Restricted Boltzmann Ma-
chines. The framework has been further extended to genera-
tion (Schreurs & Suykens, 2018; Winant et al., 2020), incor-
porating robustness (Pandey et al., 2020), multi-view mod-
els (Pandey et al., 2021), deep explicit feature maps (Pandey
et al., 2022b) or times-series (Pandey et al., 2022a).

1.1. Contributions

1. We characterize the Prob. PCA framework in Hilbert
spaces and give a dual interpretation to the model.

2. We develop a new extension of KPCA incorporating a
noise assumption on the explicit feature map.

3. We give a probabilistic interpretation of the generation
in KPCA.

4. We illustrate how the dual model works on a toy and a
real dataset and show its connections to KPCA2.

2. Primal and Dual Spaces
The key idea behind the duality in PCA is that outer and in-
ner products share the same eigenvalues. The consequence
is that instead of decomposing the covariance matrix of any
given feature map, we can decompose the associated Gram
matrix, i.e. the kernel matrix. The former is considered as
the primal formulation and the latter as the dual formula-
tion and they are both equivalent. Extending Prob. PCA
to a dual formulation is however not straightforward: if
all feature maps have an associated kernel, the converse is
trickier. Some kernels correspond to feature maps in in-
finite dimensional spaces, where probability distributions
cannot be properly defined. We therefore need to choose
well defined finite subspaces to work in and consider lin-
ear operators instead of matrices. All formal definitions,
propositions and proofs are provided in Appendix A.

2Resources: https://hdeplaen.github.io/kppca.
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Figure 1. Global overview of the Probabilistic Principal Component Analysis in both primal and dual formulations. The primal spaces, or
feature H, HE and HL are in blue. The dual, or kernel and latent spaces E and L are in brown. The input space X is in green. The color
or the applications (arrows) is just for the readability and has nothing to do with the color of the spaces.

Distribution Interpretation Primal (features) Dual (kernels)
latent | observation latent projection h|ϕ ∼ N

(
Σ−1

h|ϕ ◦W ∗
ML(ϕ− ϕc), σ

2Σ−1
h|ϕ
)

h|kc ∼ N
(
Σ−1

h|kc
◦AMLkc,Σ

−1
h|kc

)
observation | latent latent-based generation ϕ|h ∼ N

(
WMLh− ϕc, σ

2IHE

)
kc|h ∼ N

(
(Φ∗

c ◦Φc) ◦AMLh, σ
2Φ∗

c ◦Φc

)
latent latent prior h ∼ N (0, IL) h ∼ N (0, IL)

observation absolute generation ϕ ∼ N (µ,WML ◦W ∗
ML + σ2IHE ) kc ∼ N

(
0,A∗

ML ◦AML + σ2 (Φ∗
c ◦Φc)

−1)
Table 1. Interpretation of the different distributions of the Prob. PCA framework after training, in both primal and dual formulations.
The covariance operators are given by Σh|ϕ = (W ∗

ML ◦WML + σ2IL)
−1 and Σh|kc =

(
A∗

ML ◦ (Φ∗
c ◦Φc) ◦AML + σ2IL

)−1, with
maximum likelihood estimators for the primal and dual interconnection operators WML and AML.

2.1. Primal Spaces

Feature Space H. Given an input space X , we first consider
any feature map φ : X → H. Following (Alaı́z et al., 2018),
we will consider a separable, possibly infinite dimensional,
Hilbert space (H, ⟨·, ·⟩H). By φ, we denote an element of
H and its adjoint by φ∗ = ⟨φ, ·⟩ ∈ H∗, with H∗ ∼ H
its Fréchet-Riesz dual space. Essentially, it corresponds
to the transpose φ⊤ in real, finite dimensional spaces as
φ⊤

1 φ2 = ⟨φ1,φ2⟩H, but generalizes it for the possibly
infinite dimensional spaces that will be necessary for the
introduction of kernels. Furthermore, we assume our space
to be defined over the reals such that ⟨·, ·⟩H : H×H → R
and its inner product is symmetric ⟨φ1,φ2⟩H = ⟨φ2,φ1⟩H.
If H is of finite dimension d, we can therefore identify its
canonical basis u1, . . . ,ud with the canonical basis of Rd.

Finite Feature Space HE . Considering a set of N ob-
servations {xi ∈ X}Ni=1, the idea is to work directly in H
by considering instead the feature map of the datapoints
φi = φ (xi). We can however not define a normal distribu-
tion onto the full H yet as it is possibly infinite dimensional.
We therefore have to consider a finite subspace HE ⊂ H.
A natural choice would be HE = span {φ1, . . . ,φN}. We
now first have to find an orthonormal basis for HE .

2.2. Dual Spaces

Kernels. For each feature map, there is an induced pos-
itive semi-definite kernel k : X × X → R : k (x,y) =
⟨φ(x), φ(y)⟩H = φ(x)∗φ(y). Inversely, to each positive
semi-definite kernel corresponds a, possibly infinite dimen-
sional, feature map, even if not explicitly defined. This fol-
lows from the theory of Reproducing Kernel Hilbert Spaces.
We refer to (Schölkopf & Smola, 2001) for further info.

Kernel Space E . We now consider a finite dimensional
Hilbert space (E , ⟨·, ·⟩E) of dimension N , the number of
observations. It is defined similarly as above, with orthonor-
mal basis e1, . . . , eN . The basis also defines the identity
over E as IE =

∑N
i=1 eie

∗
i . The goal for E is to repre-

sent the space of the kernel representations. We therefore
define the linear operator Φ : E → H :

∑
i=1 φie

∗
i and

its adjoint Φ∗ : H → E :
∑N

i=1 eiφ
∗
i . Essentially, Φ∗

returns the kernel value with each datapoint: Φ∗φ(x) =∑N
i=1 ei (φ

∗
iφ(x)) =

∑N
i=1 eik (xi,x) for any x ∈ X .

Similarly, Φ projects this value back as a linear combina-
tion of the different φi’s, thus mapping back to HE ⊂ H.
For this reason, the covariance Φ ◦Φ∗ =

∑N
i=1 φiφ

∗
i acts

as a projector from H → HE . Its eigenvectors therefore
form an orthonormal basis of the finite feature space HE ,



which acts as the primal equivalent of the kernel space E .

Centered Kernels. In most applications however, we prefer
to work with the centered feature map, which we define as
φc(·) = φ(·)−φc with φc =

1
N

∑N
i=1 φi. We denote the

associated kernel associated centered kernel kc : X × X →
R : kc(x1,x2) = φc(x1)

∗φc(x2). This leads to the defini-
tion of a new centered operator Φc =

∑
i=1(φi−φc)e

∗
i =

Φ
(
IE − 1

N 1E×E
)
, with 1E×E =

∑N
i,j=1 eie

∗
j . As always,

we also consider its adjoint Φ∗
c . Considering the dual

operator, we have Φ∗
c ◦ Φc =

∑N
i=1(φi − φc)

∗(φi −
φc)eie

∗
j =

∑N
i=1 kc(xi,xj)eie

∗
j . We notice now that

HE = span{φ1, . . . ,φN} = span{φ1 − φc, . . . ,φN −
φc} because φc is a linear combination of the elements
of the basis. Therefore, the primal operator Φc ◦ Φ∗

c =∑N
i=1(φi − φc)(φi − φc)

∗ also acts as a projector from
H → HE and we can choose its eigenvectors instead as an
orthonormal basis of HE .

Covariance and Kernels. We now consider the key idea
behind the duality in PCA: the operators Φc ◦ Φ∗

c and
Φ∗

c ◦Φc are self-adjoint, positive semi-definite and share
the same non-zero eigenvalues. We have Φc ◦ Φ∗

c =∑N
i=1 λiviv

∗
i and HE = span{v1, . . . ,vN}. Similarly, we

have Φ∗
c ◦Φc =

∑N
i=1 λiϵiϵ

∗
i and E = span{ϵ1, . . . , ϵN}.

The identity over the (primal) finite feature space HE can
now be defined as IHE =

∑N
i=1 viv

∗
i and the identity over

the (dual) kernel space E as IE =
∑N

i=1 ϵiϵ
∗
i . This is syn-

thetized in the two first columns of Table 2. The identity
over H reads IH = IHE +PH⊥

E
, with PH⊥

E
a projector over

the null space of Φc ◦ Φ∗
c . It most be noted that it may

happen that these basis may contain too much basis vectors
if the two operators Φ∗

c ◦ Φc and Φc ◦ Φ∗
c are not of full

rank. In particular, this is the case when dim(H) = d is
finite and d < N . In this particular case, we would also
have dim(HE) = dim(E) = d. Without loss of generality,
we will assume that this is not the case. Similarly, we will
neglect the case N > d as we could just neglect the null
space of Φ∗

c ◦Φc.

Notations. We can now define our probabilistic model over
HE . We will therefore use the notation ϕ instead of φ to
consider the feature map in our finite dimensional subspace
HE . More formally, we have ϕ : X → HE : IHE ◦ φ and
following from that ϕc : X → HE : IHE ◦ φc. In particular,
we have the observations ϕi = ϕ(xi) = φi and ϕc = φc,
as those are linear combinations of the basis. For the sake of
readability, we will write ϕ = ϕ(x), the image of a random
variable x ∈ X and refer to it as a feature observation or
representation. Given any Hilbert space, a an element of it
and a linear operator Σ from and to that space, we consider
the multivariate normal distribution a ∼ N

(
b,Σ

)
as the

distribution with density 1
Z exp

(
− 1

2 (a− b)∗Σ−1(a− b)
)
.

It is well defined if Z is non-zero and finite.

Dimension d N q

Pr
im

al Space H(= Rd) HE ⊂ H HL ⊂ HE
Canon. Basis {ui}di=1 N.A. N.A.
Other Basis N.A. {vi}Ni=1 {ϱp}qp=1

D
ua

l Space N.A. E = RN L ⊂ E
Canon. Basis N.A. {ei}Ni=1 N.A.
Other Basis N.A. {ϵi}Ni=1 {rp}qp=1

Table 2. Different spaces with their dimension and the canonical
orthonormal basis if it applies, as well as another (non-canonical)
basis when used throughout this paper. The equality H = Rd only
makes sense if dim(H) = d is finite.

3. Primal Model
We will now essentially follow the work of (Tipping &
Bishop, 1999) and redefine the model distributions. This
section corresponds to the primal formulation and we only
consider the feature representations. It does not yet intro-
duce the kernel representations, which will appear in the
dual formulation (Section 4).

3.1. Model and Latent Space

Factor Analysis. The starting point is to consider a factor
analysis relationship (Bartholomew et al., 2011; Basilevsky,
2009) between the feature observations ϕ and the latent
variables h. In particular, we consider

ϕ = Wh+ µ+ ζ. (1)

The observations ϕ live in the primal space HE of di-
mension N . We consider an isotropic normal noise ζ ∼
N
(
0, σ2IHE

)
of variance σ2 ∈ R>0 and a mean µ ∈ HE .

Latent Space L. The latent variables h on the other hand
live in a latent dual space L ⊂ E of dimension q ≤ N .
They are related by a primal interconnection linear operator
W . As it was the case before with Φ, the interconnection
operator does not project to the full space HE because of its
reduced dimensionality. It therefore projects to yet another
feature space HL ⊂ HE , which acts as the primal equivalent
of the latent space L. The equality of these two spaces only
holds if q = N . We will therefore consider the mappings
W ∗ : HE → L and W : L → HL. The identity over L
can be written as IL =

∑q
p=1 rpr

∗
p , over HL as IHL =∑q

p=1 ϱpϱ
∗
p and finally the identity over HE rewritten as

IHE = IHL + PH⊥
L

, with PH⊥
L

as a projector over the null
space of W ∗ ◦W . This is summarized in the last column
of Table 2.

3.2. Feature Distributions

Latent-Based Generation. The relation between the fea-
ture observations and the latent variables being set up



(Eq. (1)), we can derive the conditional probability of the
feature observations given a latent variable:

ϕ|h ∼ N
(
Wh− µ, σ2IHE

)
. (2)

As discussed earlier, we see that the latent variables do not
participate to the full scope of the observations in HE , but
only to their component in HL. The rest is only constituted
from the isotropic normal noisy mean. This distribution can
be interpreted as a generative one: given a latent variable,
we can sample a variable in feature space.

Absolute Generation. Considering the latent prior h ∼
N
(
0, IL

)
, we can derive the marginal distribution of the

observations in feature space:

ϕ ∼ N
(
µ,W ◦W ∗ + σ2IHE

)
. (3)

It can be considered as the data distribution of the model.
Sampling from it also means generating feature represen-
tations in a more absolute way, i.e., without considering
any latent variable, or more precisely considering a random
latent variable according to its prior. As a consequence of
Eq. (2) and the isotropic aspect of the latent prior, we see
that the observations are only non-isotropically distributed
in HL. Again, the rest is only the isotropically normally
noisy mean. In other words, this means that the model
parameter W only influences ϕ for its components in HL.

3.3. Training the Model

Maximum Likelihood. As we now have the marginal distri-
bution of the model (Eq. (3)), the goal is to find the optimal
hyperparameters W and µ to match the set of observations
{ϕi}Ni=1. One way to determine them is by maximizing the
likelihood of our observations. The Maximum Likelihood
(ML) estimator for the hyperparameters is given by:

µML = ϕc, (4)

WML =

q∑
p=1

√
λp/N − σ2vpr

∗
p, (5)

with {(λp,vp)}qp=1 the q dominant eigenpairs of Φc ◦Φ∗
c

(λ1 ≥ · · · ≥ λq ≥ · · ·λN ), and {rp}qp=1 and arbitrary
orthonormal basis of the latent space L. The choice for
the latter basis is arbitrary and makes the model rotational
invariant in latent space. An additional condition is that
σ2 ≤ λq/N . It is not surprising to see that the optimal mean
µML corresponds to the mean of the observations ϕc. We
observe that WML corresponds to the eigendecomposition
of the centered covariance, at the exception that the noise
assumption is substracted from its spectrum. By looking
back at Eq. (1), it makes sense to avoid the noise in WML

as it is still going to be added by the term ζ.

Noise Variance. Maximizing the likelihood as a function
of σ2 leads to

σ2
ML =

1

N(N − q)

N∑
p=q+1

λp. (6)

The eigenvalue λp corresponds to the variance for each com-
ponent vp of the covariance Φc ◦ Φ∗

c . The total variance
of the data, noise included, is equal to 1

N

∑N
p=1 λp and

the variance learned by the model through the primal inter-
connection operator to 1

N

∑q
p=1 λp. Hence, the maximum

likelihood estimator for the noise variance σ2
ML can be inter-

preted as the mean of the variance that is discarded by the
model. It also verifies the earlier condition that σ2 ≤ λq/N ,
as the eigenvalues are taken in descending order. It can
be interpreted as the normalized mean variance of the left
over eigendirections, i.e. the orthogonal space of the latent
space: L⊥ = E\L. By consequence, we may decide to
choose the latent dimension q = dim(L) and deduct σ2

ML.
In the opposite, we may also decide to set an arbitrary σ2

and deduct the latent dimension q instead. We therefore can
consider either σ2 or q as an additional hyperparameter. We
must however keep in mind that this is strongly going to be
influenced by the distribution of the eigenvalues and that the
latent dimension q for the same σ2 may heavily vary from
application to application.

Uncentered Features. We may also consider not to con-
sider the mean as an optimizable hyperparameter and set
it arbitrarily to µ = 0. In this case, Eq. (5) would be the
same at the difference that the WML would be constructed
from the dominant eigenpairs of the uncentered covariance
Φ ◦Φ∗ instead of its centered counterpart Φc ◦Φ∗

c .

3.4. Dimensionality Reduction in Feature Space

Latent Projection. Up to now, we only considered the
distribution of the feature variables ϕ. We can also calculate
the posterior distribution of the latent variable h given the
primal feature variable ϕ:

h|ϕ ∼ N
(
Σ−1

h|ϕ ◦W ∗(ϕ− µ), σ2Σ−1
h|ϕ

)
, (7)

with Σh|ϕ =
(
W ∗ ◦W + σ2IL

)−1
. The mean of the

distribution can be considered as a pseudo-inverse of the
observation ϕ, but regularized by σ2. This regularization
ensures to avoid the noise. If the prior of the latent variables
was isotropic, this is not the case anymore for the posterior.
If we consider the maximum likelihood estimator for the pri-
mal interconnection operator WML, the variance becomes
σ2Σ−1

h|ϕ = Nσ2
∑q

p=1 λ
−1
p rpr

∗
p . It can be interpreted as

the uncertainty for each component of the latent variable h
(w.r.t. the eigendirection rp), due to the noise assumption.
By consequence, the greater the explained variance λp for
the eigendirection vp of the covariance Φc ◦Φ∗

c , the smaller



the corresponding uncertainty on the component rp of the
latent vairable h. For each observation in feature space ϕ,
this returns a distribution for the latent variable ϕ and can
therefore be considered as a sort of probabilistic projection
in latent space L.

Maximum A Posteriori. Up to now, we were only con-
sidering distributions. The only way to go from a feature
representation to a latent variable or the opposite was proba-
bilistic. In order to have a deterministic approach, we need
proper mappings. One way is to consider the Maximum A
Posteriori (MAP) of h given ϕ. It maps the feature observa-
tion ϕ ∈ HE to latent variable hMAP ∈ L, hence reducing
the dimensionality of any input to that of the latent space.
To allow it to work for any input φ ∈ H, we may again con-
sider the projection ϕ = IHEφ. As W ∗

ML ◦ IHE = W ∗
ML:

hMAP =
(
W ∗

ML ◦WML + σ2IL
)−1

◦W ∗
ML (φ−φc) .

(8)

To map back to the feature space HL, we may consider the
maximum a posteriori of ϕ given h (Eq. (3)). This gives

ϕMAP = WMAPh+ ϕc. (9)

The final projection reads

ϕMAP =WML ◦
(
W ∗

ML ◦WML + σ2IL
)−1

◦W ∗
ML (φ−φc) + ϕc.

(10)

No Noise. We may also decide not to consider σ2 as a
parameter to optimize and set it to an arbitrary value. The
latent dimensions q could also be set an arbitrary value,
without it to be related to the latent dimension q according
to Eq. (6). We notice that in the limit of σ2 → 0, we recover
the classical Principal Component Analysis reconstruction
scheme. Indeed the conditional probability distributions
become exact relations. We also notice that the condition
σ2 ≤ λq/N (Prop. 3) is then always satisfied. Furthermore,
when q = dim(HE), the reconstruction is perfect in HE and
in particular for our original observations {φi}Ni=1 and φc

(as we have ϕi = φi). Indeed, we would have

hMAP = W+
ML (φ−φc) , (11)

with W+
ML the Moore-Penrose pseudo-inverse of WML. .

We note here the symmetry with Eq. (9). If the maximum
likelihood estimator for σ2 is to be respected (Eq. (6)), this
would mean that all components are kept (L = E) and the
model reconstructs the full feature variance. In this case,
the primal interconnection operator would become WML =∑N

p=1

√
λp/Nvpr

∗
p and be invertible. Its Moore-Penrose

pseudo-inverse would become an exact inverse. Eqs. (9) and
(11) would become exact opposites and there would be no
loss due to the dimensionality reduction as there would be
no noise to discard. By consequence, the reduction would
become an identity over HE : ϕMAP−ϕc = IHL (φ−φc).

4. Dual Model
Kernels without Dual. In (Zhang et al., 2004), the authors
made the kernel matrix appear by considering the new obser-
vations

{∑d
i=1 uiu

∗
jϕ(xi)

}N
j=1

. In other words, each new
datapoint consists in one particular feature of the feature
map, for each original datapoint. If the original datapoints
were organized as a matrix in RN×d, this would correspond
to taking its transpose as new datapoints. The outer product
of the covariance matrix is transformed to the inner product
of the kernel matrix. If indeed this formulation makes the
kernel appear, it is not a dual formulation of the original
problem, but another problem. In this section, we show how
the spaces defined hereabove help us build an equivalent
dual formulation of the problem.

Dual Formulation. While keeping an equivalence with the
primal model, we will now see that we can directly work in
dual spaces E and L without considering the feature spaces
at all, i.e. resorting to the primal space H and its subsets. As
we did for the primal feature variable ϕ, we will consider
kc = Φ∗

c(ϕ − ϕc) =
∑N

i=1 kc(x,xi)ei to represent the
image in E , of a random variable x ∈ X . We will refer to it
as a dual feature variable.

4.1. Representation

Considering the dual spaces, we can always express the
interconnection operator W in the (non-orthonormal) ba-
sis {ϕ1 − ϕc, . . . ,ϕN − ϕc}. As a consequence, we can
always write

W = Φc ◦A, (12)

with A : L → L, the dual interconnection operator. Given
the maximum likelihood estimator for the primal intercon-
nection operator WML, we can directly deduce the dual
one:

AML =

q∑
p=1

√
1/N − σ2λ−1

p ϵpr
∗
p, (13)

with {(λp, ϵp)}qp=1 the q dominant eigenpairs of Φ∗
c ◦Φc

and {rp}qp=1 an arbitrary orthonormal basis of the latent
space L. The rotational invariance of the dual interconnec-
tion operator AML is inherited from its primal counterpart
WML. Again, if we consider an optimized mean µ = 0,
we would have the relation WML = Φ ◦AML with AML

then based on the eigenpairs of the non-centered Φ∗ ◦ Φ
instead. Using the same structure for AML, the optimal
(primal) interconnection operator WML could be expressed
in the (non-ortonormal) basis {ϕ1, . . . ,ϕN}.

4.2. Kernel Distributions

Projection and Generation. We can also consider the
dual counterparts of the distributions of the primal model
(Eqs. (2) and (7)). For the sake of simplicity and to avoid



heavier equations with non-centered kernels, we will only
consider here the equations of the trained model, in particu-
lar with µML = ϕc leading to centered kernels:

kc|h ∼ N
(
(Φ∗

c ◦Φc) ◦AMLh, σ
2Φ∗

c ◦Φc

)
, (14)

h|kc ∼ N
(
Σ−1

h|kc
◦AMLkc,Σ

−1
h|kc

)
, (15)

with Σh|kc
=
(
A∗

ML ◦
(
Φ∗

c ◦Φc

)
◦AML + σ2IL

)−1
.

4.3. Dimensionality Reduction in Kernel Space

Maximum A Posteriori. This now allows us to consider
the dimensionality reduction in kernel space in a similar
fashion as in Section 3.4. Again we consider the MAP of
the latent variable h given the kernel representation kc:

hMAP =
(
A∗

ML ◦
(
Φ∗

c ◦Φc

)
◦AML + σ2IL

)−1

◦AMLkc,
(16)

and similarly with the MAP of the kernel representation kc

given the latent variable h:

(kc)MAP = (Φ∗
c ◦Φc) ◦AMLh. (17)

As for the primal model, the dimensionality reduction in
dual is computed as (kc)MAP = (Φ∗

c ◦Φc) ◦AMLhMAP.

No Noise. Again, considering σ2 → 0 makes both dual
conditional distributions become exact relations. In a ML
context for σ2 (Eq. (6)), this would imply that q = dim(E)
and we would recover an identity (kc)MAP = kc, i.e. no
reduction. Without considering a ML context for σ2 →
0 and choosing an arbitrary q ≤ dim(E), the reduction
become exactly the reconstruction done in KPCA.

4.4. Kernel Sampling

Probabilistic Sampling. The dual counterpart of Eq. (3)
after training is given by

kc ∼ N
(
0,A∗

ML ◦AML + σ2 (Φ∗
c ◦Φc)

−1
)
. (18)

The covariance A∗
ML ◦ AML + σ2 (Φ∗

c ◦Φc)
−1 can

be decomposed as B ◦ B∗, with B : E → E :

N−1/2
∑q

p=1 λpϵpε
∗
p +

∑N
p=q+1 σλ

1/2
p ϵpε

∗
p and {εi}Ni=1

any arbitrary orthonormal basis of the latent space E . This
decomposition allows us to sample kc on the trained model
with kc = Bξ with ξ ∼ N (0, IE). We see that B is
rotational invariant, which is not surprising as this is also
the case for the distribution from which ξ is sampled. In
practice and for simplicity, we may decide too choose the
canonical basis for {εi}Ni=1 as any choice would be iden-
tified to the same covariance and to the same sampling
of kc. We will therefore assume that εi = ei for all
i = 1, . . . , N . In that particular case, B is self-adjoint

and by consequence corresponds to the matrix square root
of A∗

ML ◦AML + σ2 (Φ∗
c ◦Φc)

−1.

KPCA Sampling The classical sampling done by
KPCA (Schreurs & Suykens, 2018) corresponds to the limit
of σ2 → 0 for an arbitrary latent dimension q. Unless the
latent dimension is chosen as q = dim(E), the sampling in
that case can never cover E fully, but rather L, as B is not
a bijection. The second term of B (

∑N
p=q+1 σλ

1/2
p ϵpε

∗
p)

allows B to be a bijection no matter what is the choice of
the latent dimension q, as long as σ2 > 0. We thus always
sample in the full E . This can be observed at Fig. 2.

IL

E

E
L

u ∼ N (0, IE)

(kc)Prob. PCA

(kc)KPCA

KPCA Generation

B

Figure 2. Schematic overview of the dual sampling in Prob. PCA
compared to the generation in KPCA.

5. Experiments
Hilbert Spaces to Matrices. Working in Hilbert spaces is
helpful to treat possibly infinite dimensional feature maps,
but not very useful for practical applications. Matrix rep-
resentations are possible in primal if d is finite and in dual
if N is finite. It suffices to consider the different canon-
ical basis. For the latent space L, this enforces a unique
representation for WML and AML, but we must keep in
mind that they are rotational invariant. All the operators and
elements described before are then represented in matrix
or vector format (Table 3). We will use the tilde to denote
these matrices and use software-like notation by denoting
with (·)i1:i2,j1:j2 the matrix truncated to its i1 to i2 rows and
j1 to j2 columns.

Preimage. Given a dual representation, we will also con-
sider the kernel smoother preimage method, as suggested
by (Schreurs & Suykens, 2018):

x̂ =

∑N
i=1(k̃)ixi∑N
i=1(k̃)i

. (19)

In practice, as we work with centered feature maps and
kernels, it may be that the kernel smoother may be unstable
due to its normalization term. We therefore may consider to
add a stabilization term.
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(a) With q = 1 component, the explained variance is 31.23% and
σ2 = 1.40%.
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(b) With q = 3 components, the explained variance is 54.03% and
σ2 = 0.98%.
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(c) With q = 10 components, the explained variance is 91.93%
and σ2 = 0.20%.

Figure 3. Visualisation of the Probabilistic PCA reconstruction (in
blue) the classical KPCA (in red). Samples generated by are also
given (in grey). The dataset contains N = 20 points (in black).

(a) Sample of original datapoints.

(b) Datapoints of Fig. 4a after dimensionality reduction.

(c) Generated datapoints. The sample ũ is uniform on [−1, 1] for
the two first components and zero for the others. The horizontal
axis varies in the first component and the vertical one in the second
component.

Figure 4. The Probabilistic PCA dual formulation on the MNIST
dataset restricted to 0’s and 1’s, with N = 500 datapoints, with
q = 2 components. The explained variance is 27.97% and σ2 =
0.14%.



Name Space Values
D

ua
l

K̃c RN×N (k̃c)i,j = kc(xi,xj)

Ẽ RN×N
(
Ẽ
)
i,j

= e∗i ϵj

R̃ Rq×q R̃ = Iq
h̃ Rq

(
h̃
)
p
= e∗ph

k̃c RN
(
k̃c

)
i
= e∗ikc

B
ot

h Λ̃ RN×N
≥0 Λ̃ = diag(λ1, . . . , λN )

S̃ Rq×q
≥0 S̃ = diag(s1, . . . , sq)

Pr
im

al

C̃c Rd×d
(
C̃c

)
i,j

=
(
u∗
iΦc

)
◦
(
u∗
jΦc

)∗
Φ̃c Rd×N

(
Φ̃c

)
i,j

= u∗
iΦcej

Ṽ Rd×N
(
Ṽ
)
i,j

= u∗
i vj

P̃ Rd×q
(
P̃
)
i,p

= v∗
i ϱp

ϕ̃ Rd
(
ϕ)i = v∗

i ϕ

ϕ̃c Rd
(
ϕc)i = v∗

i ϕc

Table 3. Representation of the various operators and elements in
their respective canonical basis, as matrices and vectors. The
primal representations exist if and only if dim(H) = d is finite.

Name Space Trained

W̃ Rd×q Ṽ1:N,1:q

(
Λ̃1:q,1:q/N − σ2Iq

)1/2
Ã RN×q Ẽ1:N,1:q

(
Iq/N − σ2

(
Λ̃1:q,1:q

)−1)1/2
B̃ RN×q ẼΛ̃1/2

[
(N)−1/2Λ̃

1/2
1:q,1:q 0

0 σIN−q

]
Table 4. Value of the different operators in the canonical basis,
after training.

5.1. Model

The direct application of the theoretical discussions of
the previous sections leads to the decompositions K̃c =
ẼΛ̃Ẽ⊤, C̃c = Ṽ Λ̃Ṽ ⊤, Φ̃c = Ṽ Λ̃1/2Ẽ⊤. The value of
the operators after training are given in Table 4. Once the
model is trained, we can verify that W̃ = Φ̃cÃ.We can
also have a look at the hidden variables. A way to do it is to
consider the MAP of h given ϕ or k. We have

hMAP = NΛ̃−1
1:q,1:qÃ

⊤k̃c (if rank(K̃c) ≥ q), (20)

= NΛ̃−1
1:q,1:qW̃

⊤(ϕ̃− ϕ̃c

)
(if H is finite), (21)

and(
kc

)
MAP

= K̃cÃh̃ (if rank(K̃c) ≥ q), (22)

ϕMAP = W̃ h̃+ ϕ̃c (if H is finite). (23)

As developed in Section 4, we can easily generate samples
in both feature and kernel representations. For the latter and
in canonical basis, it becomes

k̃c = B̃ũ, with ũ ∼ N (0, IN ). (24)

5.2. Examples

As the primal case is already treated by (Tipping & Bishop,
1999), we consider here the model in its dual formulation. A
toy example can by found in Fig. 3. We use an RBF kernel
k(x,y) = exp

(
−∥x− y∥22/(2γ2)

)
with bandwidth γ = 2.

As the number of components increases, the mean variance
of the N − q unused components σ2 becomes smaller and
the model tends to the classical KPCA model. Another
way the reduce σ2 is to increase the number of components
q, with σ2 → 0 when q → N . This can be observed in
Fig. 3c: the Probabilistic PCA model resembles closely the
KPCA model, whereas more variance is left over, i.e. not
projected back, in Fig.s 3a and 3b. The results of the gener-
ation is Gaussian, which is a consequence of the linearity
of the preimage method chosen (Eq. (19)). Here again, as
the number of components increases and σ2 decreases, the
model is allowed to project back more variance and the dis-
tribution becomes wider. Another example on the MNIST
dataset (LeCun & Cortes, 2010) with the RBF kernel with
γ = 4 is given at Fig. 4.

6. Conclusion
Probabilistic Interpretation. By reformulating the Prob.
PCA model in Hilbert space, we were able to define a for-
mulation of it. Likewise Prob. PCA in primal was englobing
classical PCA (with σ2 → 0), Prob. PCA in dual is also en-
globing KPCA in the same limit. Furthermore, we are now
able to sample in dual space, enhancing the understanding
of the generation done with KPCA.

Limitations. As most kernel methods, the model is still
limited by the need of a preimage method to go back to the
input space once a sample is projected or generated. Fur-
thermore, training the model in dual required to find the q
first eigenvalues of the kernel matrix, which may become
expensive as the number of datapoints N increases. Gen-
erating renders the problem even worse as it requires the
computation of all eigenvalues. The model also requires to
determine a σ2 or alternatively a latent dimension q.
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A. Theoretical Development
For brevity of notations, we will define the expectation value as ∥a∥2Σ = a∗Σa ∈ R≥0, with a an element of a Hilbert
space and Σ a linear operator from and to that space. The norm is a particular case with the identity as operator Σ = I . The
density function of the multivariate normal distribution a ∼ N (b,Σ) can be rewritten as 1

Z exp
(
− 1

2∥a− b∥2
Σ−1

)
.

A.1. Primal and Dual Spaces

Lemma 1. The operators Φc ◦ Φ∗
c and Φ∗

c ◦ Φc are self-adjoint, positive semi-definite and share the same non-zero
eigenvalues. In particular, we have the eigenvector relations vi = (λi)

−1/2Φcϵi and ϵi = (λi)
−1/2Φ∗

cvi.

Proof. The result stated here is inspired from (Alaı́z et al., 2018). Self-adjointness is a consequence of the definition of the
inner product, which also guarantees the positive semi-definiteness. (=⇒) Let us suppose that (Φ∗

c ◦Φc)ei = λiϵi with
λi ̸= 0. We then have Φc ◦ (Φ∗

c ◦Φc)ϵi = (Φc ◦Φ∗
c) ◦Φcϵi = λiΦcϵi. Hence, we have that Φcϵi is eigenvector, but

not necessarily normalized. In fact, its norm is given by ϵ∗iΦ
∗
c ◦Φcϵi = λi. We thus have the relation ui = (λi)

−1/2Φϵi.
(⇐=) We suppose now that (Φc ◦Φ∗

c)ui, which leads to Φ∗
c ◦ (Φc ◦Φ∗

c)ui = (Φ ◦Φ∗) ◦Φ∗
cui = λiu

∗. Again, we have
the relation ϵi = (λi)

−1/2Φ∗
cui.

A.2. Primal Model

A.2.1. FEATURE DISTRIBUTION

Definition 1 (Conditional Feature Distribution). Considering ϕ,µ ∈ HE , h ∈ L, a linear operator W : L → HL and its
adjoint W ∗ : HE → L. We define the conditional probability distribution of the primal feature variable ϕ with variance
σ2 ∈ R>0 as

p (ϕ |h ) =
1(

σ
√
2π
)N exp

(
−1

2σ2
∥ϕ−Wh− µ∥2IHE

)
. (25)

The following proposition verifies that the conditional distribution of ϕ given h (Def. 1) is well defined. To ease the
readability, we first consider a Lemma.

Lemma 2. Given values a ∈ R>0 and b, c ∈ R, we have the following integral

∫
R
exp

(
−1

2
ax2 + bx+ c

)
dx =

√
2π

a
exp

(
b2

2a
+ c

)
. (26)

Proof. We first find the primitive
∫
exp
(
− 1

2ax
2 + bx + c

)
dx =

√
π
2a exp

(
b2

2a + c
)
erf
(
ax−b√

2a

)
, with the error function

defined as erf(x) = 2√
π

∫ x

0
e−t2 dt. Indeed, we have d

dxerf(x) =
2√
π
e−x2

. It suffices then to derivate the primitive to verify
them. To conclude the proof, it suffices to notice that the error function is symmetric and that limx→+∞ erf(x) = 1.

From now on, we will consider the singular value decomposition of the primal interconnection linear operator W =∑q
p=1 spϱpr

∗
p , with ϱp ∈ HE and r∗p ∈ L∗ two sets of orthonormal variables and sp ∈ R>0 the singular values.

Proposition 1. Def. 1 is a well-defined distribution. More specifically, its measure is normalized:∫
L
p (ϕ |h ) dϕ = 1. (27)

Proof. By considering the singular value decomposition of W , the term inside the exponential becomes

− 1

2σ2

N∑
i=1

{
(v∗

i ϕ)
2 − (v∗

i ϕ)
(
2

q∑
p=1

( (
r∗ph

) (
ϱ∗
pvi

)
sp
)
+ (v∗

i µ)
)}

+ C, (28)



with C = − 1
2σ2 (Wh+ µ)

∗
(Wh+ µ) = − 1

2σ2

∑N
i=1

∑q
p=1

(
(r∗ph)(ϱ

∗
pvi)sp + (v∗

i µ
)2

. Integrating over HE means
integrating over span {vi, . . . ,vN}, thus for all (v∗

i ϕ) ∈ R. Using Lemma 2 and by Fubini’s theorem, we have

∫
F
p (ϕ |h,ϱ ) dϕ =

(
σ
√
2π
)−N

exp(−C)

∫
RN

exp

(
N∑
i=1

(
− 1

2σ2
x2
i + bixi

))
dx, (29)

=
(
σ
√
2π
)−N

exp(−C)

N∏
i=1

∫
R
exp

(
− 1

2σ2
x2
i + bixi

)
dxi, (30)

=
(
σ
√
2π
)−N

exp(−C)

N∏
i=1

σ
√
2π exp

(
1

2
σ2b2i

)
, (31)

= exp

(
1

2
σ2

N∑
i=1

b2i − C

)
, (32)

with bi =
1
σ2

(
(r∗ph)(ϱ

∗
pvi)sp + (v∗

i µ
)
. The proof is concluded by observing that C = 1

2σ
2
∑N

i=1 b
2
i .

We can now consider the marginal distribution of the feature representation ϕ.

Lemma 3. Both linear operators W ◦W ∗ + σ2IHE and W ∗ ◦W + σ2IL are positive definite, of full rank and invertible.
The linear operator W ◦W ∗ + σ2IHE shares the q non-zero eigenvalues of W ∗ ◦W + σ2IL, with the remaining N − q
eigenvalues being equal to σ2. In particular, we have

eig
(
W ∗ ◦W + σ2IL

)
=
{
s2p + σ2

}q
p=1

, (33)

eig
(
W ◦W ∗ + σ2IHE

)
=
{
s2p + σ2

}q
p=1

∪
{
σ2
}N−q

. (34)

Proof. We consider the eigenvalues of W ∗ ◦W + IL =
∑q

p=1(s
2
p + σ2)ϱpϱ

∗
p. Its eigenvalues are thus given by s2p + σ2

for p = 1, . . . , q and we directly conclude that they are all strictly positive. In a similar fashion, the eigenvalues of
W ◦W ∗ + σ2IHE =

∑q
p=1(s

2
p + σ2)rpr

∗
p + σ2PHE are given by s2p + σ2 for p = 1, . . . , q and σ2 for k = q + 1, . . . , N .

All the eigenvalues are strictly positive. Hence are the operators positive definite, full rank and invertible.

Proposition 2 (Marginal Feature Distribution). Assuming the conditional distribution of ϕ given h (Def. 1), assumed
normally distributed, i.e., p(h) = (2π)

−q/2
exp

(
− 1

2h
∗h
)
, the posterior distribution of the primal feature vector ϕ is given

by

p(ϕ) =
1

Zϕ
exp

(
−1

2
∥ϕ− µ∥2Σ−1

ϕ|W

)
, (35)

with Zϕ = (2π)N/2
(
(σ2)N−q

∏q
p=1(s

2
p + σ2)

)1/2
and Σϕ|W = W ◦W ∗ + σ2IHE

Proof. The joint probability distribution is given by Bayes’ theorem as p(ϕ,h) = p(ϕ|h)p(h). The integration proceeds in
a very similar fashion as the proof of Prop. 1. Similarly, the term inside the exponential becomes

− 1

2σ2

q∑
p=1

{(
r∗ph

)2 (
s2p + σ2

)
−
(
r∗ph

) (
2sp
(
ϱ∗
p(ϕ− µ)

))}
+D, (36)

with

D = − 1

2σ2
(ϕ− µ)

∗
(ϕ− µ) , (37)

= − 1

2σ2

q∑
p=1

(ϱ∗
p(ϕ− µ))2 − 1

2σ2
(ϕ− µ)

∗ PHE (ϕ− µ) . (38)



Here again, integrating on the whole latent space L means integrating for all
(
r∗ph

)
∈ R. Again, we use Lemma 2 and

Fubini’s theorem. After some simplification inside the exponential, we can use the development made in Lemma 3 to find
the following:

−1

2

{
q∑

p=1

(ϱ∗
p(ϕ− µ))2

s2p + σ2
+

1

σ2
(ϕ− µ)

∗ PHE (ϕ− µ)

}
= −1

2
(ϕ− µ)

∗ (
W ◦W ∗ + σ2IHE

)−1
(ϕ− µ) . (39)

The normalization term follows similarly to Proposition 1 and we can verify the consistency of the obtained distribution by
looking at the spectrum using Lemma 3.

A.2.2. MAXIMUM LIKELIHOOD

Training the model in primal corresponds to maximizing the likelihood of the observations in the finite feature space HE .
Proposition 3 (Primal Maximum Likelihood). Provided σ2 ≤ λq/N , where λq is the qth greatest eigenvalue of Φc ◦Φ∗

c ,
the Maximum Likelihood (ML) of W and µ given the observations {ϕi}Ni=1 is given by

µML = ϕc, (40)

WML =

q∑
p=1

√
λp/N − σ2vpr

∗
p, (41)

with {(λp,vp)}qp=1 the greatest eigenpairs of Φc ◦Φ∗
c (w.r.t. the eigenvalues).

Proof. The maximum likelihood of the observations {ϕi}Ni=1 is computed as argmaxW ,µ log
(∏N

i=1 p(ϕi|W ,µ)
)
=

argmaxW ,µLϕ, with Lϕ the likelihood function, which can be written as

Lϕ = −N

2

{
N log(2π) + (N − q) log

(
σ2
)
+

q∑
p=1

log
(
s2p + σ2

)
+

1

Nσ2

N∑
i=1

(ϕi − µ)∗PHE (ϕi − µ)

+
1

N

q∑
p=1

1

s2p + σ2

(
N∑
i=1

(
ϱ∗
p(ϕi − µ)

))2}
.

(42)

The optimization of the mean µ is trivial and we have µML = ϕc. The optimization of W =
∑q

p=1 spϱpr
∗
p is less trivial.

We first note that optimizing for {ϱp}qp=1, {s2p}
q
p=1 and {rp}qp=1 is not identifiable: indeed, two singular values may be

equal. Furthermore, the likelihood function Lϕ is independent of the basis {rp}qp=1 and for any solution of ϱp, we must
also admit its opposite −ϱp too. In addition to that, computing the saddle points of the likelihood is not straightforward as
we cannot consider the vectors {ϱp}qp=1 to be independent variables as they must remain orthonormal: the variation of one
basis vector ϱp must keep it normalized and has an influence on the other basis vectors. For sp however, the variations may
happen with the only constraint of strict positivity. We may thus consider

∂Lϕ

∂sp
= 0 ⇐⇒ s2p + σ2 =

1

N

(
ϱ∗
p

( N∑
n=1

ϕn − µ
))2

. (43)

We now consider the fact that PHE = IHE −
∑q

p=1 ϱpϱ
∗
p. The likelihood function restricted to the terms dependent on ϱp

reduces to
1

2

{
q∑

p=1

(
1

s2p + σ2
− 1

σ2

)
Φ∗

c ◦
(
ϱpϱ

∗
p

)
◦Φc

}
. (44)

From there, we can deduce that the likelihood is maximized when {ϱp}qp=1 forms a basis of span(v1, . . . ,vp), with {vp}qp=1

the q greatest eigenvectors of Φc ◦ Φ∗
c (w.r.t. the eigenvalues λp’s). We may thus identify both basis: ϱp = vp and by

consequence s2p + σ2 = λp/N (from Eq. (43)), for all p = 1, . . . , q.

What about the other choices of basis? At the end, it would not change anything as it would be identified to the same solution.
Indeed, as the ϱp’s could always be written as a linear combination of {vp}qp=1, we could always write the interconnection
operator as WML =

∑q
p=1(λp/N − σ2)vpr

∗
p as the choice of the orthonormal basis {rp}qp=1 is arbitrary.



A.2.3. DIMENSIONALITY REDUCTION IN FEATURE SPACE

Proposition 4 (Primal Conditional Latent Distribution). The conditional distribution of h given ϕ is given by

p (h |ϕ ) =
1

Zh|ϕ
exp

(
− 1

2σ2
∥h−m∥2Σ−1

h|ϕ

)
, (45)

with Σh|ϕ =
(
W ∗ ◦W + σ2IL

)−1
, m = (Σh|ϕ)

−1W ∗(ϕ− µ) and Zh|ϕ = (σ
√
2π)q

(∏q
p=1(s

2
p + σ2)

)−1/2
.

Proof. The methodology is analogous to Props. 1 and 2.

A.3. Dual Model

A.3.1. REPRESENTATION

Proposition 5 (Dual Representation). Given any interconnection operator W : L → HL, we have the following represen-
tation:

W = Φc ◦A, (46)

with A : L → L, the dual interconnection operator.

Proof. Following our definitions, we know that Φc ◦ Φ∗
c ≥ q. By consequence, the linear operator Φc : H → E has at

least q non-zero singular values. As we have dim(L) = dim(HL), the proof is concluded by recalling that the primal
interconnection operator W : L → HL is also linear.

Proposition 6 (Dual Maximum Likelihood). Given the operator WML (Prop. 3) and provided σ2 ≤ λq/N , where λq is the
qth greatest eigenvalue of Φ∗

c ◦Φc, the dual interconnection operator AML : L → L is given by:

AML =

q∑
p=1

√
1/N − σ2λ−1

p ϵpr
∗
p, (47)

with {(λp, ϵp)}qp=1 the greatest eigenpairs of Φ∗
c ◦Φc (w.r.t. the eigenvalues) and {rp}qp=1 an arbitrary orthonormal basis

of the latent space L.

Proof. Using the relation vp = (λp)
−1/2Φcϵp, we have

WML =

q∑
p=1

√
λp/N − σ2vpr

∗
p, (48)

=

q∑
p=1

(λp)
−1/2

√
λp/N − σ2Φcϵpr

∗
p, (49)

= Φc ◦

(
q∑

p=1

√
1/N − σ2λ−1

p ϵpr
∗
p

)
. (50)

The proof is concluded by insuring that 1/N − σ2λ−1
p is never negative.

A.3.2. DIMENSIONALITY REDUCTION IN KERNEL SPACE

Proposition 7 (Conditional Kernel Distribution). Under the same assumption as Prop. 6 and provided that Φ∗
c ◦Φc is of

full rank, the posterior distribution of the dual feature variable kc given the latent variable h is given by

p (kc|h) =
1

Zkc|h
exp

(
− 1

2σ2
∥kc − (Φ∗

c ◦Φc) ◦AMLh∥2Σ−1
kc|h

)
, (51)

with Zkc|h =
(
σ
√
2π
)N ∏N

i=1 λi and Σkc|h = Φ∗
c ◦Φc.



Proof. We consider the optimal primal interconnection operator WML = Φc ◦ AML together with the optimal mean
µML = ϕc and fill it in Def. 1. The covariance is deducted by considering ϕ−ϕc =

(
Φ∗

c

)−1◦Φ∗
c(ϕ−ϕc) =

(
Φ∗

c

)−1
kc.

Proposition 8 (Dual Conditional Latent Distribution). Under the same assumption as Prop. 6, the posterior distribution of
the latent variable h given the dual feature variable kc is given by

p(h|kc) =
1

Zh|kc

exp

(
− 1

2σ2
∥h−m′∥2Σ−1

h|kc

)
, (52)

with Σh|kc
=
(
A∗

ML ◦
(
Φ∗

c ◦Φc

)
◦AML + σ2IL

)−1
, Zh|kc

= Zh|ϕ (Prop. 4) and m′ =
(
Σ−1

h|kc
◦A∗

ML

)
kc.

Proof. It suffices to consider the optimal primal interconnection operator WML = Φc ◦AML, as well as the optimal mean
µML = ϕc and fill both in Prop. 4.

A.3.3. KERNEL SAMPLING

Proposition 9 (Marginal Kernel Distribution). Provided that Φ∗
c ◦Φc is of full rank and given the assumptions of Prop. 6,

the posterior distribution of the the dual feature kc after optimization is given by

p(kc) =
1

Zkc

exp

(
−1

2
∥kc∥2Σ−1

kc

)
, (53)

with Σkc = A∗
ML ◦AML + σ2 (Φ∗

c ◦Φc)
−1 and Zkc = (2π)N/2N−q/2

∏q
p=1 λp

∏N
p=q+1(σ

2λp)
1/2.

Proof. We start from Prop. 2 and develop the covariance:

WMLW
∗
ML + σ2IHE = Φc ◦

(
A∗ ◦A+ σ2 (Φ∗

c ◦Φc)
−1
)
◦Φ∗

c , (54)

= Φc ◦

(
1

N

q∑
p=1

ϵpϵ
∗
p + σ2

N∑
p=q+1

λ−1
p ϵpϵ

∗
p

)
◦Φ∗

c . (55)

We set µML = ϕc and observe that

(ϕ− ϕc)
∗ (

WMLW
∗
ML + σ2IHE

)−1
(ϕ− ϕc) , = k∗

c

(
Φ∗

c ◦
(
WMLW

∗
ML + σ2IHE

)
◦Φc

)−1
kc, (56)

= k∗
c

(
1

N

q∑
p=1

λ2
pϵpϵ

∗
p + σ2

N∑
p=q+1

λpϵpϵ
∗
p

)
kc. (57)


