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Context & Contributions

▶ We characterize Probabilistic Principal Component Analysis (Tipping &
Bishop, 1999) in Hilbert spaces and demonstrate how the optimal
solution admits a representation in dual space.

▶ We develop a new extension of KPCA (Mika et al., 1998; Schölkopf et
al., 1998) incorporating a noise assumption on the feature map.

▶ We give a probabilistic interpretation to the generation in KPCA
(Schreurs & Suykens, 2018).

▶ We illustrate how the dual model works on a toy and a real dataset and
show its connections to KPCA.

Definitions

As some kernels lead to infinite dimensional feature maps, we need to
carefully define finite subspaces to allow the proper definition of
probability distributions. Given a set of observations {φi ∈ H}Ni=1 and a
kernel space E with basis {ei}Ni=1 and a finite feature space
HE = span {φ1, . . . ,φN}. We define the mapping Φ : E → HE :

∑N
i=1φie∗

i .
This defines the covariance Φ ◦Φ∗ and the kernels Φ∗ ◦Φ. We consider a
latent space L ⊂ E of dimension q and define the interconnection operator
W : L → HL, where HL ⊂ HE. We refer to the feature spaces H, HE and
HL as the primal spaces and E and L as the dual spaces.

Distribution Interpretation Primal (features) Dual (kernels)
latent | observation latent projection h|ϕ ∼ N

(
Σ−1

h|ϕ ◦ W ∗ϕ, σ2Σ−1
h|ϕ

)
h|k ∼ N

(
Σ−1

h|k ◦ Ak ,Σ−1
h|k

)
observation | latent latent-based generation ϕ|h ∼ N

(
Wh, σ2IHE

)
k|h ∼ N

(
(Φ∗ ◦Φ) ◦ Ah, σ2Φ∗ ◦Φ

)
latent latent prior h ∼ N (0, IL) h ∼ N (0, IL)
observation absolute generation ϕ ∼ N (µ,W ◦ W ∗ + σ2IHE) k ∼ N

(
0,A∗ ◦ A + σ2 (Φ∗ ◦Φ)−1)

Table: Interpretation of the different distributions of the Prob. PCA framework after training, in both primal and dual formulations. The covariance operators are given by

Σh|ϕ = (W ∗ ◦ W + σ2IL)−1 and Σh|k =
(
A∗ ◦ (Φ∗ ◦Φ) ◦ A + σ2IL

)−1
. For the simplicity of this presentation, we do not consider the centering of kernels of feature maps and refer to the paper

for these considerations.
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Figure: Global overview of the Probabilistic Principal Component Analysis in both primal and dual formulations. The primal
spaces, or feature H, HE and HL are in blue. The dual, or kernel and latent spaces E and L are in brown. The input space X
is in green. The color or the applications (arrows) is just for the readability and has nothing to do with the color of the spaces.
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Figure: Schematic overview of the dual sampling in Prob. PCA
compared to the generation in KPCA, with

B : E → E : N−1/2
∑q

p=1 λpϵpr ∗p +
∑N

p=q+1 σλ
1/2
p ϵpr ∗p .

Maximum Likelihood

If we consider the eigendecomposition of the covariance Φ ◦Φ∗ =
∑N

i=1 λiviv ∗
i

and take the q dominant eigenpairs (λ1 ≥ · · · ≥ λq ≥ · · · ≥ λN), we have

WML =
∑q

p=1

√
λp/N − σ2

MLvpr ∗p ,
σ2
ML =

1
N(N−q)

∑N
p=q+1 λp,

with {rp}qp=1 and arbitrary orthonormal base of the latent space L. We note
that WML is not unique as it is rotational invariant.

Representation

As a consequence of the choice of HE as span {φ1, . . . ,φN}, we have
W = Φ ◦ A, with A : L → L,

and in particular, as Φ∗ ◦Φ and Φ ◦Φ∗ share the same spectrum:

AML =
∑q

p=1

√
1/N − σ2

MLλ
−1
p ϵpr ∗p ,

with {(λp, ϵp)}qp=1 the q dominant eigenpairs of Φ∗ ◦Φ.
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(a) With q = 1 component, the explained variance is
31.23% and σ2

ML = 1.40%.
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(b) With q = 3 components, the explained variance is
54.03% and σ2

ML = 0.98%.

Figure: Visualisation of the Probabilistic PCA reconstruction (in blue) the classical KPCA (in red). Samples generated by are
also given (in grey). The dataset contains N = 20 points (in black).

Figure: Generated datapoints on the MNIST dataset restricted
to 0’s and 1’s, with N = 500 datapoints, with q = 2
components. The sample u is uniform on [−1, 1] for the two
first components and zero for the others. The horizontal axis
varies in the first component and the vertical one in the second
component. The explained variance is 27.97% and
σ2
ML = 0.14%.


