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Abstract

During training, supervised object detection tries to cor-
rectly match the predicted bounding boxes and associated
classification scores to the ground truth. This is essen-
tial to determine which predictions are to be pushed to-
wards which solutions, or to be discarded. Popular match-
ing strategies include matching to the closest ground truth
box (mostly used in combination with anchors), or match-
ing via the Hungarian algorithm (mostly used in anchor-
free methods). Each of these strategies comes with its own
properties, underlying losses, and heuristics. We show how
Unbalanced Optimal Transport unifies these different ap-
proaches and opens a whole continuum of methods in be-
tween. This allows for a finer selection of the desired prop-
erties. Experimentally, we show that training an object de-
tection model with Unbalanced Optimal Transport is able
to reach the state-of-the-art both in terms of Average Preci-
sion and Average Recall as well as to provide a faster initial
convergence. The approach is well suited for GPU imple-
mentation, which proves to be an advantage for large-scale
models.

1. Introduction

Object detection models are in essence multi-task mod-
els, having to both localize objects in an image and classify
them. In the context of supervised learning, each of these
tasks heavily depends on a matching strategy. Indeed, deter-
mining which predicted object matches which ground truth
object is a non-trivial yet essential task during the training
(Figure 1a). In particular, the matching strategy must en-
sure that there is ideally exactly one prediction per ground
truth object, at least during inference. Various strategies
have emerged, often relying on hand-crafted components.
They are proposed as scattered approaches that seem to have
nothing in common, at least at first glance.
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(a) Image №163 from the COCO training
dataset. The ground truth boxes are colored, and
the predictions are outlined in black.
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(b) Costs between
the predictions and
the ground truth
(1 − GIoU). The
background cost is
c∅ = 0.8.
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(c) Prediction
to best ground
truth (Unbalanced
OT with ϵ = 0,
τ1 → +∞ and
τ2 = 0).
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(d) Hungarian
matching (OT with
ϵ = 0, τ1 → +∞
and τ2 → +∞).
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(e) Ground truth to
best prediction (Un-
balanced OT with
ϵ = 0, τ1 = 0 and
τ2 → +∞).
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(f) Unbalanced OT
with ϵ = 0.05,
τ1 = 100 and τ2 =
0.01.
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(g) OT with ϵ =
0.05 (τ1 → +∞
and τ2 → +∞).
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(h) Unbalanced OT
with ϵ = 0.05,
τ1 = 0.01 and
τ2 = 100.

Figure 1. Different matching strategies. All are particular cases of
Unbalanced Optimal Transport.



1.1. A Unifying Framework

To perform any match, a matching cost has to be deter-
mined. The example at Fig. 1b uses the Generalized Inter-
section over Union (GIoU) [46]. Given such a cost matrix,
matching strategies include:

• Matching each prediction to the closest ground truth
object. This often requires that the cost lies under a
certain threshold [37, 45, 44, 33], to avoid matching
predictions that may be totally irrelevant for the current
image. The disadvantage of this strategy is its redun-
dancy: many predictions may point towards the same
ground truth object. In Fig. 1c, both predictions 1 and
4 are matched towards ground truth object A. Further-
more, some ground truth objects may be unmatched. A
solution to this is to increase the number of predicted
boxes drastically. This is typically the case with an-
chors boxes and region proposal methods.

• The opposite strategy is to match each ground truth
object to the best prediction [25, 37]. This ensures that
there is no redundancy and every ground truth object is
matched. This also comes with the opposite problem:
multiple ground truth objects may be matched to the
same prediction. In Fig. 1e, both ground truth objects
A and B are matched to prediction 4. This can be mit-
igated by having more predictions, but then many of
those are left unmatched, slowing convergence [37].

• A compromise is to perform a Bipartite Matching
(BM), using the Hungarian algorithm [29, 40], for ex-
ample [6, 55]. The matching is one-to-one, minimiz-
ing the total cost (Definition 2). Every ground truth
object is matched to a unique prediction, thus reducing
the number of predictions needed, as shown in Fig. 1d.
A downside is that the one-to-one matches may vary
from one epoch to the next, again slowing down con-
vergence [31]. This strategy is difficult to parallelize,
i.e. to take advantage of GPU architectures.

All of these strategies have different properties and it
seems that one must choose either one or the other, option-
ally combining them using savant heuristics [37]. There is
a need for a unifying framework. As we show in this paper,
Unbalanced Optimal Transport [9] offers a good candidate
for this (Figure 1). It not only unifies the different strategies
here above, but also allows to explore all cases in between.
The cases presented in Figures 1c, 1d and 1e correspond to
the limit cases. This opens the door for all intermediate set-
tings. Furthermore, we show how regularizing the problem
induces smoother matches, leading to faster convergence of
DETR, avoiding the problem described for the BM. In addi-
tion, the particular choice of entropic regularization leads to
a class of fast parallelizable algorithms on GPU known as

scaling algorithms [10, 8], of which we provide a compiled
implementation on GPU. Our code and additional resources
are publicly available1.

1.2. Related Work

Matching Strategies Most two-stage models often
rely on a huge number of initial predictions, which is then
progressively reduced in the region proposal stage and re-
fined in the classification stage. Many different strategies
have been proposed for the initial propositions and sub-
sequent reductions, ranging from training no deep learn-
ing networks [21], to only train those for the proposi-
tions [20, 32, 25], to training networks for both propositions
and reductions [45, 42, 24, 5, 11]. Whenever a deep learn-
ing network is trained, each prediction is matched to the
closest ground truth object provided it lies beneath a certain
threshold. Moreover, the final performance of these models
heavily depends on the hand-crafted anchors [35].

Many one-stage models rely again on predicting a large
number of initial predictions or anchor boxes, covering the
entire image. As before, each anchor box is matched to-
wards the closest ground truth object with certain threshold
constraints [44, 33]. In [37], this is combined with match-
ing each ground truth object to the closest anchor box and a
specific ratio heuristic between the matched and unmatched
predictions. The matching of the fixed anchors is justified to
avoid a collapse of the predictions towards the same ground
truth objects. Additionally, this only works if the number
of initial predictions is sufficiently large to ensure that ev-
ery ground truth object is matched by at least one predic-
tion. Therefore, it requires further heuristics, such as Non-
Maximal Suppression (NMS) to guarantee a unique predic-
tion per ground truth object, at least during the inference.

By using the Hungarian algorithm, DETR [6] removed
the need for a high number of initial predictions. The
matched predictions are improved with a multi-task loss,
and the remaining predictions are trained to predict the
background class ∅. Yet, the model converges slowly due
to the instability of BM, causing inconsistent optimization
goals at early training stages [31]. Moreover, the sequen-
tial nature of the Hungarian algorithm does not take full ad-
vantage of the GPU architecture. Several subsequent works
accelerate the convergence of DETR by improving the ar-
chitecture of the model [55, 36] and by adding auxiliary
losses [31], but not by exploring the matching procedure.

Optimal Transport The theory of Optimal Trans-
port (OT) emerges from an old problem [38], relaxed by a
newer formulation [26]. It gained interest in the machine
learning community since the re-discovery of Sinkhorn’s
algorithm [10] and opened the door for improvements
in a wide variety of applications ranging from graphical
models [39], kernel methods [28, 13], loss design [17],

1https://hdeplaen.github.io/uotod
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auto-encoders [50, 27, 47] or generative adversarial net-
works [3, 22].

More recent incursions in computer vision have been at-
tempted, e.g. for the matching of predicted classes [23], a
loss for rotated object boxes [54] or a new metric for perfor-
mance evaluation [41]. Considering the matching of predic-
tions to ground truth objects, recent attempts using OT bare
promising results [18, 19]. However, when the Hungarian
algorithm is mentioned, it is systematically presented in op-
position to OT [18, 53]. We lay a rigorous connection be-
tween those two approaches in computer vision.

Unbalanced OT has seen a much more recent theoretical
development [9, 7]. The hard mass conservation constraints
in the objective function are replaced by soft penalization
terms. Its applications are scarcer, but we must mention
here relatively recent machine learning applications in mo-
tion tracking [30] and domain adaptation [16].

1.3. Contributions

1. We propose a unifying matching framework based on
Unbalanced Optimal Transport. It encompasses both
the Hungarian algorithm, the matching of the predic-
tions to the closest ground truth boxes and the ground
truth boxes to the closest predictions;

2. We show that these three strategies correspond to par-
ticular limit cases and we subsequently present a much
broader class of strategies with varying properties;

3. We demonstrate how entropic regularization can speed
up the convergence during training and additionally
take advantage of GPU architectures;

4. We justify the relevancy of our framework by explor-
ing its interaction with NMS and illustrate how it is on
par with the state-of-the-art.

1.4. Notations and Definitions

Notations Throughout the paper, we use small bold
letters to denote a vector a ∈ RN , with elements ai ∈ R.
Similarly, matrices are denoted by bold capital letters such
as A ∈ RN×M , with elements Ai,j ∈ R. The notation 1N

represents a column-vector of ones, of size N , and 1N×M

the matrix equivalent of size N×M . The identity matrix of
size N is IN,N . With JNK = {1, 2, . . . , N}, we denote the
set of integers from 1 to N . The probability simplex uses
the notation ∆N =

{
u ∈ RN

≥0

∣∣∑
i ui = 1

}
and represents

the set of discrete probability distributions of dimension N .
This extends to the set of discrete joint probability distribu-
tions ∆N×M .

Definitions For each image, the set {ŷi}
Np

i=1 denotes
the predictions and {yj}

Ng

j=1 the ground truth samples. Each
ground truth sample combines a target class and a bounding
box position: yj = [ cj , bj ] ∈ RNc+4 where cj ∈ {0, 1}Nc

is the target class in one-hot encoding with Nc the number
of classes and bj ∈ [0, 1]4 defines the relative bounding box
center coordinates and dimensions. The predictions are de-
fined similarly ŷi = [ ĉi, b̂i ] ∈ RNc+4, but the predicted
classes may be non-binary ĉi ∈ [0, 1]

Nc . Sometimes, pre-
dictions are defined relatively to fixed anchor boxes b̃i.

2. Optimal Transport
In this section, we show how Optimal Transport and

then its Unbalanced extension unify both the Hungarian al-
gorithm used in DETR [6], and matching each prediction
to the closest ground truth object used in both Faster R-
CNN [45] and SSD [37]. We furthermore stress the advan-
tages of entropic regularization, both computationally and
qualitatively. This allows us to explore a new continuum of
matching methods, with varying properties.

Definition 1 (Optimal Transport). Given a distribution α ∈
∆Np associated to the predictions {ŷi}

Np

i=1, and another
distribution β ∈ ∆Ng associated with the ground truth ob-
jects {yj}

Ng

j=1. Let us consider a pair-wise matching cost
Lmatch(ŷi,yj) between a prediction ŷi and a ground truth
object yj . We now define Optimal Transport (OT) as finding
the match P that minimizes the following problem:

P̂ = argmin
P ∈U(α,β)


Np,Ng∑
i,j=1

Pi,jLmatch (ŷi,yj)

 , (1)

with transport polytope (admissible solutions) U(α,β) ={
P ∈ RNp×Ng

≥0 :
∑Ng

j=1 Pi,j = αi,
∑Np

i=1 Pi,j = βj

}
.

Provided that certain conditions apply to the underly-
ing cost Lmatch, the minimum defines a distance between
α and β, referred to as the Wasserstein distance W(α,β)
(for more information, we refer to monographs [52, 48, 43];
see also Appendix A.2).

2.1. The Hungarian Algorithm

The Hungarian algorithm solves the Bipartite Matching
(BM). We will now show how this is a particular case of
Optimal Transport.

Definition 2 (Bipartite Matching). Given the same objects
as in Definition 1, the Bipartite Matching (BM) minimizes
the cost of the pairwise matches between the ground truth
objects with the predictions:

σ̂ = argmin


Ng∑
j=1

Lmatch
(
ŷσ(j),yj

)
: σ ∈ PNg (JNpK)

 ,

(2)
where PNg (JNpK) =

{
σ ∈ P(JNpK)

∣∣ |σ| = Ng

}
is the set

of possible combinations of Ng in Np, with P(JNpK) the
power set of JNpK (the set of all subsets).



(a) BM as a particular case of OT
with no regularization (ϵ = 0).
The Hungarian algorithm obtains the
same solution.

(b) OT with regularization (ϵ ̸=
0). The regularization smoothens the
matching allowing for multiple con-
nections.

(c) Unbalanced OT with regulariza-
tion (ϵ ̸= 0 and τ1 ≪ τ2). The
smoothing is also visible.

(d) Matching each ground truth ob-
ject to the closest prediction as Un-
balanced OT without regularization
with ϵ = 0, τ1 = 0 and τ2 → ∞.

Figure 2. Example of the influence of the parameters. The blue dots represent predictions ŷi. The red squares represent ground truth
objects yj . The distributions α and β are defined as in Prop. 1. The thickness of the lines is proportional to the amount transported Pi,j .
Only sufficiently thick lines are plotted. The dummy background ground truth yNg+1 = ∅ is not shown, nor are the connections to it.

BM tries to assign each ground truth yj to a different pre-
diction ŷi in a way to minimize the total cost. In contrast
to OT, BM does not consider any underlying distributions
α and β, all ground truth objects and predictions are im-
plicitly considered to be of same mass. Furthermore, it only
allows one ground truth to be matched to a unique predic-
tion, some of these predictions being left aside and matched
to nothing (which is then treated as a matching to the back-
ground ∅). The OT must match all ground truth objects to
all predictions, not allowing any predictions to be left aside.
However, the masses of the ground truth objects are allowed
to be split between different predictions and inversely, as
long as their masses correctly sum up (P ∈ U(α,β)).

Particular Case of OT A solution for an imbalanced
number of predictions compared to the number of ground
truth objects would be to add dummy ground truth objects—
the background ∅—to even the balance. Concretely, one
could add a new ground truth yNg+1 = ∅, with the mass
equal to the unmatched number of predictions. In fact, do-
ing so directly results in performing a BM.

Proposition 1. The Hungarian algorithm with Np predic-
tions and Ng ≤ Np ground truth objects is a particular
case of OT with P ∈ U(α,β) ⊂ RNp×(Ng+1), consist-
ing of the predictions and the ground truth objects, with the
background added {yj}Ng+1

j=1 = {yj}Ng

j=1 ∪
(
yNg+1 = ∅

)
.

The chosen underlying distributions are

α =
1

Np
[ 1, 1, 1, . . . , 1︸ ︷︷ ︸

Np predictions

], (3)

β =
1

Np
[ 1, 1, . . . , 1︸ ︷︷ ︸
Ng ground truth objects

, (Np −Ng)︸ ︷︷ ︸
background ∅

], (4)

provided the background cost is constant: Lmatch (ŷi,∅) =
c∅. In particular for j ∈ JNgK, we have σ̂(j) =
{i : Pi,j ̸= 0}, or equivalently σ̂(j) = {i : Pi,j = 1/Np}.

Proof. We refer to Appendix B.1.

In other words, we can read the matching to each ground
truth in the columns of P̂ . The last columns represents all
the predictions matched to the background σ̂(Ng + 1). Al-
ternatively and equivalently, we can read the matching of
each prediction i in the rows, the ones being matched to the
background have a P̂i,Ng+1 = 1/Np.

Solving the Problem Both OT and BM are linear
programs. Using generic formulations would lead to a
(Np +Ng + 1) × Np (Ng + 1) equality constraint matrix.
It is thus better to exploit the particular bipartite structure
of the problem. In particular, two families of algorithms
have emerged: Dual Ascent Methods and Auction Algo-
rithms [43]. The Hungarian algorithm is a particular case
of the former and classically runs with an O

(
N4

p

)
com-

plexity [40], further reduced to cubic by [14]. Although
multiple GPU implementations of a BM solver have been
proposed [51, 12, 15], the problem remains poorly paral-
lelizable because of its sequential nature. To allow for effi-
cient parallelization, we must consider a slightly amended
problem.

2.2. Regularization

We show here how we can replace the Hungarian algo-
rithm by a class of algorithms well-suited for paralleliza-
tion, obtained by adding an entropy regularization.

Definition 3 (OT with regularization). We consider a regu-
larization parameter ϵ ∈ R≥0. Extending Definition 1 (OT),
we define the Optimal Transport with regularization as the
following minimization problem:

P̂ = argmin
P ∈U(α,β)


Np,Ng∑
i,j=1

Pi,jLmatch (ŷi,yj)− ϵH(P )

 ,

(5)
with H : ∆N×M → R≥0 : P 7→ −

∑
i,j Pi,j(log(Pi,j)−1)

the entropy of the match P , with 0 ln(0) = 0 by definition.

Sinkhorn’s Algorithm The entropic regularization
used when finding the match P̂ ensures that the problem is
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Figure 3. Effect of the regularization on the minimization of the
matching cost. The red line corresponds to the regularized prob-
lem (ϵ ̸= 0) and the blue to the unregularized one (ϵ = 0).

smooth for ϵ ̸= 0 (see Figure 3). The advantage is that it can
now be solved very efficiently using scaling algorithms and
in this particular case the algorithm of Sinkhorn. It is partic-
ularly suited for parallelization [10], with some later speed
refinements [2, 1]. Reducing the regularization progres-
sively renders the scaling algorithms numerically unstable,
although some approaches have been proposed to reduce the
regularization further by working in log-space [49, 8]. In
the limit of ϵ → 0, we recover the exact OT (Definition 1)
and the scaling algorithms cannot be used anymore. Paral-
lelization is lost and we must resolve to use the sequential
algorithms developed in Section 2.1. In brief, regularization
allows to exploit GPU architectures efficiently, whereas the
Hungarian algorithm and similar cannot.

Smoother Matches When no regularization is used as
in the Hungarian algorithm, close predictions and ground
truth objects can exchange their matches from one epoch
to the other, during the training. This causes a slow con-
vergence of DETR in the early stages of the training [31].
The advantage of the regularization not only lies in the ex-
istence of efficient algorithms but also allows for a reduc-
tion of sparsity. This results in a less drastic match than the
Hungarian algorithm obtains. A single ground truth could
be matched to multiple predictions and inversely. The pro-
portion of these multiple matches is controlled by the regu-
larization parameter ϵ. An illustration can be found in Fig-
ures 2a and 2b.

2.3. Unbalanced Optimal Transport

We will now show how considering soft constraints in-
stead of hard leads to an even greater generalization of the
various matching techniques used in object detection mod-
els. In particular, matching each prediction to the closest
ground truth is a limit case of the Unbalanced OT.

Definition 4 (Unbalanced OT). We consider two constraint
parameters τ1, τ2 ∈ R≥0. Extending Definition 3 (OT with
regularization), we define the Unbalanced OT with regular-

ization [8] as the following minimization problem:

P̂ = argmin
P∈RNp×Ng

≥0

{
ϵKL(P ∥Kϵ)+ τ1KL(P1Ng

∥α)

+ τ2KL(1⊤
Np

P ∥β)
}
,

(6)
where KL : RN×M

≥0 × RN×M
>0 → R≥0 : (U ,V ) 7→∑N×M

i,j=1 Ui,j log(Ui,j/Vi,j) − Ui,j + Vi,j is the Kullback-
Leibler divergence – also called relative entropy – between
matrices or vectors when M = 1, with 0 ln(0) = 0 by
definition. The Gibbs kernel Kϵ is given by (Kϵ)i,j =
exp (−Lmatch (ŷi,yj) /ϵ).

We can see by development that the first term corre-
sponds to the matching term PLmatch and an extension
of the entropic regularization term H(P ). The two ad-
ditional terms replace the transport polytope’s hard con-
straints U(α,β) that required an exact equality of mass
for both marginals. These new soft constraints allow for
a more subtle sensitivity to the mass constraints as it allows
to slightly diverge from them. It is clear that in the limit of
τ1, τ2 → +∞, we recover the “balanced” problem (Defi-
nition 3). This definition naturally also defines Unbalanced
OT without regularization if ϵ = 0. The matching term
would remain and the entropic one disappear.

Matching to the Closest Another limit case is how-
ever particularly interesting in the quest for a unifying
framework of the matching strategies. If the mass constraint
is to be perfectly respected for the predictions (τ1 → ∞),
but not at all for the ground truth objects (τ2 = 0), it suf-
fices to assign the closest ground truth to each prediction.
The same ground truth object could be assigned to mul-
tiple predictions and another could not be matched at all,
not respecting the hard constraint for the ground truth β.
Each prediction however is exactly assigned once, perfectly
respecting the mass constraint for the predictions α. By
assigning a low enough value to the background, a predic-
tion would be assigned to it provided all the other ground
truth objects are further. In other words, the background
cost would play the role of a threshold value.

Proposition 2 (Matching to the closest). We consider the
same objects as Proposition 1. In the limit of τ1 →
∞ and τ2 = 0, Unbalanced OT (Definition 4) with-
out regularization (ϵ = 0) admits as solution each pre-
diction being matched to the closest ground truth ob-
ject unless that distance is greater than a threshold value
Lmatch

(
ŷi,yNg+1 = ∅

)
= c∅. It is then matched to the

background ∅. In particular, we have

P̂i,j =

{ 1
Np

if j = arg minj∈JNg+1K {Lmatch (ŷi,yj)} ,
0 otherwise.

(7)



Proof. We refer to Appendix B.2.

τ1

∞

0 ∞

τ2

(degenerate)

Ground truth object
to best prediction

Prediction to best
ground truth object

Bipartite
Matching

Figure 4. Limit cases of Unbalanced OT without regularization
(ϵ = 0).

The converse also holds. If the ground truth objects
mass constraints were to be perfectly respected (τ2 → ∞),
but not the predictions (τ1 → 0), each ground truth would
then be matched to the closest prediction. The background
would be matched to the remaining predictions. Some
predictions could not be matched and other ones multiple
times. The limits of Unbalanced OT are illustrated in Fig. 4.
By setting the threshold sufficiently high, we get an exact
minimum, i.e., where every prediction is matched to the
closest ground truth. This can be observed in Figure 2d.

Scaling Algorithm Similarly as before, adding en-
tropic regularization (ϵ ̸= 0) to the Unbalanced OT allows
it to be solved efficiently on GPU with a scaling algorithm,
as an extension of Sinkhorn’s algorithm [8, 7]. The regular-
ization still also allows for smoother matches, as shown in
Figure 2c.

Softmax In the limit of τ1 → +∞ and τ2 = 0, the
solution corresponds to a softmax over the ground truth ob-
jects for each prediction. The regularization ε controls then
the “softness” of the softmax, with ε = 1 corresponding to
the conventional softmax and ε → 0 the matching to the
closest. We refer to Appendix C.2 for more information.

3. Matching
Following previous work [6, 55, 45, 44, 37], we define

a multi-task matching cost between a prediction ŷi and a
ground truth object yj as the composition of a classifica-
tion loss ensuring that similar object classes are matched
together and a localization loss ensuring the correspon-
dence of the positions and shapes of the matched boxes
L(ŷi,yj) = Lclassification(ĉi, cj) + Llocalization(b̂i, bj). Most
models, however, do not use the same loss to determine the
matches as the one used to train the model. We therefore re-
fer to these two losses as Lmatch and Ltrain. The training pro-
cedure is the following: first find a match P̂ given a match-
ing strategy and matching costLmatch, then compute the loss
Np

∑Np

i=1

∑Ng

j=1 P̂ijLtrain(ŷi,yj) where the particular train-
ing loss for the background ground truth includes only a
classification term Ltrain(ŷi,∅) = Lclassification(ĉi,∅).

3.1. Detection Transformer (DETR)

The object detection is performed by matching the pre-
dictions to the ground truth boxes with the Hungarian al-
gorithm applied to the loss Lmatch(ŷi,yj) = λprob(1 −
⟨ĉi, cj⟩)+λℓ1∥b̂i−bj∥1+λGIoU(1−GIoU(b̂i, bj)) (Def-
inition 2). To do so, the number of predictions and ground
truth boxes must be of the same size. This is achieved by
padding the ground truths with (Np − Ng) dummy back-
ground ∅ objects. Essentially, this is the same as what is
developed in Proposition 1. The obtained match is then
used to define an object-specific loss, where each matched
prediction is pushed toward its corresponding ground truth
object. The predictions that are not matched to a ground
truth object are considered to be matched with the back-
ground and are pushed to predict the background class.
The training loss uses the cross-entropy (CE) for classifi-
cation: Ltrain(ŷi,yj) = λCELCE(ĉi, cj)+λℓ1∥b̂i−bj∥1+
λGIoU(1 − GIoU(b̂i, bj)). By directly applying Proposi-
tion 1 and adding entropic regularization (Definition 3), we
can use Sinkhorn’s algorithm and push each prediction ŷi

to ground truth yj according to weight P̂i,j . In particular,
for any non-zero P̂i,Ng+1 ̸= 0, the prediction ŷi is pushed
toward the background yNg+1 = ∅ with weight P̂i,Ng+1.

3.2. Single Shot MultiBox Detector (SSD)

The Single Shot MultiBox Detector [37] uses a match-
ing cost only comprised of the IoU between the fixed an-
chor boxes b̃i and the ground truth boxes: Lmatch(ŷi,yj) =

1 − IoU(b̃i, bj) (the GIoU was not published yet [46]).
Each ground truth is first matched toward the closest an-
chor box. Anchor boxes are then matched to a ground
truth object if the matching cost is below a threshold of
0.5. In our framework, this corresponds to applying τ1 = 0
and τ2 → ∞ for the first phase and then τ1 → ∞ and
τ2 = 0 with c∅ = 0.5 (see Proposition 2). Here again, by
adding entropic regularization (Definition 4), we can solve
this using a scaling algorithm. We furthermore can play
with the parameters τ1 and τ2 to make the matching tend
slightly more towards a matching done with the Hungar-
ian algorithm (Figure 2). Again, the training uses a dif-
ferent loss than the matching, in particular Ltrain(ŷi,yj) =

λCELCE(ĉi, cj) + λsmooth ℓ1Lsmooth ℓ1(b̂i, bj).
Hard Negative Mining Instead of using all negative

examples Nneg = (Np−Ng) (predictions matched to back-
ground), the method sorts them using the highest confidence
loss LCE(ĉi,∅) and picks the top ones so that the ratio be-
tween the hard negatives and positives Npos = Ng is at most
3 to 1. Since P̂ is non-binary, we define the number of nega-
tives and positives to be the sum of the matches to the back-
ground Nneg = Np

∑Np

i=1 P̂i,(Ng+1) and to the ground truth
objects Npos = Np

∑Ng

j=1

∑Np

i=1 P̂ij . We verify that for any
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Figure 5. Convergence curves for DETR on the Color Boxes
dataset. The model converges faster with a regularized matching.

P ∈ U(α,β), we have the same number of positives and
negatives as the initial model: Nneg = (Np − Ng) and
Npos = Ng . Hence, hard negatives are the K predictions
with the highest confidence loss P̂k,(Ng+1)LCE(ĉk,∅) such
that the mass of kept negatives is at most triple the number
of positives: Np

∑K
k=1 P̂

s
k,(Ng+1) ≤ 3Npos, where P̂ s is

a permutation of transport matrix P̂ with rows sorted by
highest confidence loss.

4. Experimental Results & Discussion
We show that matching based on Unbalanced Optimal

Transport generalizes many different matching strategies
and performs on par with methods that use either Bipar-
tite Matching or anchor boxes along with matching each
prediction to the closest ground truth box with a threshold.
We then analyze the influence of constraint parameter τ2 by
training SSD with and without NMS for multiple parameter
values. Finally, we show that OT with entropic regulariza-
tion both improves the convergence and is faster to compute
than the Hungarian algorithm in case of many matches.

4.1. Setup

Datasets We perform experiments on a synthetic ob-
ject detection dataset with 4.800 training and 960 valida-
tion images and on the large-scale COCO [34] dataset with
118,287 training and 5,000 validation test images. We re-
port on mean Average Precision (AP) and mean Average
Recall (AR). The two metrics are an average of the per-
class metrics following COCO’s official evaluation proce-
dure. For the Color Boxes synthetic dataset, we uniformly
randomly draw between 0 and 30 rectangles of 20 different
colors from each image. Appendix I provides the detailed
generation procedure and sample images.

Training For a fair comparison, the classification and
localization costs for matching and training are identical
to the ones used by the models. Unless stated other-
wise, we train the models with their default hyper-parameter
sets. DETR and Deformable DETR are trained with hyper-
parameters λprob = λCE = 2, λℓ1 = 5 and λGIoU = 2.

Model Matching τ2 Epochs AP AR

C
ol

or
B

ox
es

DETR Hungarian (∞) 300 50.9 65.7
DETR Hungarian (∞) 150 45.3 60.7
DETR OT (∞) 150 50.3 65.7

D. DETR Hungarian (∞) 50 64.0 75.9
D. DETR OT (∞) 50 63.5 76.5

C
O

C
O

D. DETR Hungarian (∞) 50 44.5 63.0
D. DETR OT (∞) 50 44.2 62.0

SSD300 Two Stage —- 120 24.9 36.8
SSD300 Unb. OT 0.01 120 24.7 36.4

Table 1. Object detection metrics for different models and loss
functions on the Color Boxes and COCO datasets.

For Deformable DETR, we found the classification cost
to be overwhelmed by the localization costs in the reg-
ularized minimization problem (Definition 3). We there-
fore set λprob = 5. We, however keep λCE = 2 so
that the final loss value for a given matching remains un-
changed. SSD is trained with original hyper-parameters
λCE = λsmooth ℓ1 = 1. For OT, we set the entropic regu-
larization to ϵ = ϵ0/(log (2Np) + 1) where ϵ0 = 0.12 for
all models (App. D). In the following experiments, the Un-
balanced OT is solved with multiple values of τ2 whereas
τ1 is fixed to a large value τ1 = 100 to simulate a hard con-
straint. In practice, we limit the number of iterations of the
scaling algorithm. This provides a good enough approxi-
mation [19].

4.2. Unified Matching Strategy

DETR and Deformable DETR Convergence curves
for DETR on the Color Boxes dataset are shown in Fig. 5
and associated metrics are presented in Table 1. DETR con-
verges in half the number of epochs with the regularized
balanced OT formulation. This confirms that one reason
for slow DETR convergence is the discrete nature of BM,
which is unstable, especially in the early stages of training.
Training the model for more epochs with either BM or OT
does not improve metrics as the model starts to overfit. Ap-
pendix E provides qualitative examples and a more detailed
convergence analysis. We evaluate how these results trans-
late to faster converging DETR-like models by addition-
ally training Deformable DETR [55]. In addition to model
improvements, Deformable DETR makes three times more
predictions than DETR and uses a sigmoid focal loss [33]
instead of a softmax cross-entropy loss for both classifica-
tion costs. Table 1 gives results on Color Boxes and COCO.
We observe that the entropy term does not lead to faster
convergence. Indeed, Deformable DETR converges in 50
epochs with both matching strategies. Nevertheless, both
OT and bipartite matching lead to similar AP and AR.

SSD and the Constraint Parameter To better under-
stand how unbalanced OT bridges the gap between DETR’s



Matching τ2
with NMS w/o NMS

AP AR AP AR

Two Stage —- 51.6 67.0 23.2 77.8

Unb. OT 0.01 51.1 66.3 25.3 76.5
Unb. OT 0.1 50.9 66.8 35.9 75.4
Unb. OT 1 48.3 64.4 44.3 73.4
Unb. OT 10 48.0 64.1 44.9 72.9

OT (∞) 48.1 64.3 45.2 73.0

Table 2. Comparison of matching strategies on the Color Boxes
dataset. SSD300 is evaluated both with and without NMS.

and SSD’s matching strategies, we analyze the variation in
performance of SSD for different values of τ2. Results for
an initial learning rate of 0.0005 are displayed in Table 2. In
the second row, the parameter value is close to zero. From
Proposition 2 and when ϵ → 0, each prediction is matched
to the closest ground truth box unless the matching cost ex-
ceeds 0.5. Thus, multiple predictions are matched to each
ground truth box, and NMS is needed to eliminate near du-
plicates. When NMS is removed, AP drops by 25.8 points
and AR increases by 10.2 points. We observe similar results
for the original SSD matching strategy (1st row), which sug-
gests matching each ground truth box to the closest anchor
box does not play a huge role in the two-stage matching pro-
cedure from SSD. The lower part of Table 1 shows the same
for COCO. When τ2 → +∞, one recovers the balanced for-
mulation used in DETR (last row). Removing NMS leads
to a 2.9 points drop for AP and a 9.7 points increase for AR.
Depending on the field of application, it may be preferable
to apply a matching strategy with a low τ2 and with NMS
when precision is more important or without NMS when
the recall is more important. Moreover, varying parameter
τ2 offers more control on the matching strategy and there-
fore on the precision-recall trade-off [4].

Computation Time For a relatively small number of
predictions, implementations of Sinkhorn perform on par
with the Hungarian algorithm (Fig. 6). The “balanced”
algorithm is on average 2.6ms slower than the Hungar-
ian algorithm for 100 predictions (DETR) and 1.5ms faster
for 300 predictions (Deformable DETR). For more predic-
tions, GPU parallelization of the Sinkhorn algorithm makes
a large difference (more than 50x speedup). As a reference
point, SSD300 and SSD512 make 8, 732 and 24, 564 pre-
dictions.

5. Conclusion and Future Work
Throughout the paper, we showed both theoretically and

experimentally how Unbalanced Optimal Transport unifies
the Hungarian algorithm, matching each ground truth ob-
ject to the best prediction and each prediction to the best
ground truth, with or without threshold.

100 300 1000 8732
Number of predictions

10-3

10-2

Ti
m

e
[s

]

Scaling alg. for OT (Sinkhorn)
Scaling alg. for Unb. OT
Hungarian alg.

DETR Def. DETR SSD
Model

Figure 6. Average and standard deviation of the computation time
for different matching strategies on COCO with batch size 16. The
Hungarian algorithm is computed with SciPy and its time includes
the transfer of the cost matrix from GPU memory to RAM. We run
20 Sinkhorn iterations. Computed with an Nvidia TITAN X GPU
and Intel Core i7-4770K CPU @ 3.50GHz.

Experimentally, using OT and Unbalanced OT with en-
tropic regularization is on par with the state-of-the-art for
DETR, Deformable DETR and SSD. Moreover, we showed
that entropic regularization lets DETR converge faster on
the Color Boxes dataset and that parameter τ2 offers bet-
ter control of the precision-recall trade-off. Finally, we
showed that the scaling algorithms compute large numbers
of matches faster than the Hungarian algorithm.

Limitations and Future Work The convergence im-
provement of the regularized OT formulation compared to
bipartite matching seems to hold only for DETR and on
small-scale datasets. Further investigations may include
Wasserstein-based matching costs for a further unification
of the theory and the reduction of the entropy with time, as
it seems to boost convergence only in early phases, but not
in fine-tuning.
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Janne Heikkilä, and Shin’ichi Satoh. Optimal correction
cost for object detection evaluation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21107–21115, 2022. 3

[42] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards
balanced learning for object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 821–830, 2019. 2
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